[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2125)

15014

B. Tech 1st Semester Examination Engineering Physics-I (NS) NS-102

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all. Section A, B, C and D consist of 2 questions and students are advised to attempt at least one question from each of the sections. Section-E is compulsory consisting of 10 questions carrying 2 marks each. Where necessary, draw an appropriate diagram?

SECTION - A

- (a) What are Newton's rings? Derive an expression for determining the wavelength of light using Newton's rings. How Newton's rings apparatus is used to find the refractive index of the liquid?
 - (b) A parallel beam of monochromatic light of wavelength 5000Å is incident normally on a plane diffraction grating having 4000 lines/cm. Calculate the angle of diffraction for the first order principal maxima. What other higher order of diffraction are possible with this grating?
 - (c) Explain the phenomenon of double refraction in a calcite crystal. What do you understand by ordinary and extraordinary ray of light? (8+6+6=20)
- (a) How are plane polarized, elliptically polarized and circularly polarized light produced? Define quarter wave plate, half wave plate and full wave plate.

 [P.T.O.]

2 15014

- (b) In case of single slit diffraction, explain what happens when slit width is gradually increased and also when the screen is gradually moved away from the slit.
- (c) What is grating element of a diffraction grating? What particular spectra would be absent if the width of transparencies is equal to opacities? (8+6+6=20)

SECTION - B

- (a) What is Compton effect? Derive an expression for Compton shift.
 - (b) (i) If the de-Broglie wavelength of an electron is 9×10^{-10} m, calculate its kinetic energy.
 - (ii) Distinguish between phase velocity and group velocity.
 - (c) What do you understand by Heisenberg uncertainty principle? Use this to explain the non-existence of electron inside the nucleus. (8+6+6=20)
- 4. (a) What are matter waves? Write down its characteristics. Show that de-Broglie wavelength associated with a particle of mass m and kinetic energy E is given by $\lambda = \frac{h}{\sqrt{2mE}}.$
 - (b) State Maxwell's theory of electromagnetic waves. List various features of electromagnetic waves.
 - (c) When X-rays of energy 100 keV strikes a target, they are scattered at an angle 30°. Find the energy of recoiled electrons. (8+6+6=20)

SECTION - C

(a) Use Schrodinger wave equation for a particle in a 1D box to obtain eigen function and eigen values. 3 15014

- (b) Determine the probabilities of finding a particle trapped in a box of length L in the region from 0.30L to 0.65L for the first excited state.
- (c) Draw wave functions and probability density functions for particle trapped in a box of length L for ground state, 1st excited state and 2nd excited state. (8+6+6=20)
- (a) Solve Schrodinger wave equation for harmonic oscillator and hence write the eigen values for harmonic oscillator.
 - (b) (i) Comment on the statement "Energy of trapped particle in a box is quantized".
 - (ii) What do you mean by zero-point energy?
 - (c) What are the dimensions of the wave function? What is the significance of normalization of wave function?

 (8+6+6=20)

SECTION - D

- 7. (a) What is the significance of mass defect and binding energy in defining the mass of the nucleus? How these quantities are related?
 - (b) Calculate the binding energy of lithium nucleus. Given mass of proton 1.00814amu, mass of neutron 1.00893amu and mass of lithium nucleus 7.01822amu.
 - (c) (i) Compare the properties of leptons and baryons.
 - (ii) Differentiate between π -mesons and μ -mesons. (8+6+6=20)
- 8. (a) (i) Why nuclear fusion is more difficult than nuclear fission?
 - (ii) What is chain reaction'? Explain how it is used to obtain a controlled source of energy. [P.T.O.1

4 15014

- (b) Explain the salient features of primary cosmic rays.
 Differentiate between primary and secondary cosmic rays.
- (c) Calculate the energy required to create a protonantiproton pair. (8+6+6=20)

SECTION - E

- 9. (a) What are the coherent sources of light? Is it possible to obtain coherent sources from two separate sources? If not, why?
 - (b) Why don't we see interference patterns if we look at a glass window?
 - (c) If the plane of vibration of the incident beam makes an angle of 30° with the optic axis, compare the intensities of ordinary and extraordinary rays
 - (d) Write down Maxwell's equations in differential form.
 - (e) What is the significance of wave function, ψ and its square $|\psi|^2$?
 - (f) What do you understand by wave packet?
 - (g) Does harmonic oscillator in quantum mechanics explain the tunneling phenomena for a particle in a box? Explain.
 - (h) Why nuclear forces can not be of gravitational or electromagnetic type?
 - List various nuclear reactions that occur in solar energy.
 - (j) Explain particle and anti-particle. (10×2=20)